Abstract

Herein, we present an innovative synthetic approach for producing a diverse set of biobased oligomers. This method begins with olive oil and employs a wide variety of commercially available amino acids (AAs) as bio-organocatalysts, in addition to tetrabutylammonium iodide (TBAI) as a cocatalyst, to synthesize various biobased oligomers. These biobased oligomers were strategically prepared starting from epoxidized olive oil (EOO) and a variety of cyclic anhydrides (phthalic, PA; maleic, MA; succinic, SA; and glutaric, GA). Among the amino acids tested as bio-organocatalysts, L-glutamic acid (L-Glu) showed the best performance for the synthesis of both poly(EOO-co-PA) and poly(EOO-co-MA), exhibiting 100% conversion at 80 °C in 2 hours, whereas the formation of poly(EOO-co-SA) and poly(EOO-co-GA) required more extreme reaction conditions (72 hours under toluene reflux conditions). Likewise, we have succeeded in obtaining the trans isomer exclusively for the MA based-oligomer within the same synthetic framework. The obtained oligomers were extensively characterized using techniques including NMR, FT-IR, GPC and TGA. A series of computational simulations based on density functional theory (DFT) and post-Hartree Fock (post-HF) methods were performed to corroborate our experimental findings and to obtain an understanding of the reaction mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call