Abstract
Lower eukaryotes such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans possess a multiplicity of amino acid transporters or permeases which exhibit different properties with respect to substrate affinity, specificity, capacity and regulation. Regulation of amino acid uptake in response to physiological conditions of growth is achieved principally by a dual mechanism; control of gene expression, mediated by a complex interplay of pathway-specific and wide-domain transcription regulatory proteins, and control of transport activities, mediated by a series of protein factors, including a kinase, and possibly, by amino acids. All fungal and a number of bacterial amino acid permeases show significant sequence similarities (33–62% identity scores in binary comparisons), revealing a unique transporter family conserved across the prokaryotic-eukaryotic boundary. Prediction of the topology of this transporter family utilizing a multiple sequence alignment strongly suggests the presence of a common structural motif consisting of 12 α-helical putative transmembrane segments and cytoplasmically located N- and C-terminal hydrophilic regions. Interestingly, recent genetic and molecular results strongly suggest that yeast amino acid permeases are integrated into the plasma membrane through a specific intracellular translocation system. Finally, speculating on their predicted structure and on amino acid sequence similarities conserved within this family of permeases reveals regions of putative importance in amino acid transporter structure, function, post-translational regulation or biogenesis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.