Abstract

BackgroundMany insects host their obligate, maternally transmitted symbiotic bacteria in specialized cells called bacteriocytes. One of the best-studied insect nutritional endosymbioses is that of the aphid and its endosymbiont, Buchnera aphidicola. Aphids and Buchnera are metabolically and developmentally integrated, but the molecular mechanisms underlying Buchnera transmission and coordination with aphid development remain largely unknown. Previous work using electron microscopy to study aphid asexual embryogenesis has revealed that Buchnera transmission involves exocytosis from a maternal bacteriocyte followed by endocytotic uptake by a blastula. While the importance of exo- and endocytic cellular processes for symbiont transmission is clear, the molecular mechanisms that regulate these processes are not known. Here, we shed light on the molecular mechanisms that regulate Buchnera transmission and developmental integration.ResultsWe present the developmental atlas of ACYPI000536 and ACYPI008904 mRNAs during asexual embryogenesis in the pea aphid, Acyrthosiphon pisum. Immediately before Buchnera invasion, transcripts of both genes were detected by whole-mount in situ hybridization in the posterior syncytial nuclei of late blastula embryos. Following Buchnera invasion, expression of both genes was identified in the region occupied by Buchnera throughout embryogenesis. Notably during Buchnera migration, expression of both genes was not concomitant with the entirety of the bacterial mass but rather expression colocalized with Buchnera in the anterior region of the bacterial mass. In addition, we found that ACYPI000536 was expressed in nuclei at the leading edge of the bacterial mass, joining the bacterial mass in subsequent developmental stages. Finally, quantitative reverse transcription real-time PCR suggested that early in development both transcripts were maternally provisioned to embryos.ConclusionsWe venture that ACYPI000536 and ACYPI008904 function as nutrient sensors at the site of symbiont invasion to facilitate TOR-pathway-mediated endocytosis of Buchnera by the aphid blastula. Our data support earlier reports of bacteriocyte determination involving a two-step recruitment process but suggest that the second wave of recruitment occurs earlier than previously described. Finally, our work highlights that bacteriocyte-enriched amino acid transporter paralogs have additionally been retained to play novel developmental roles in both symbiont recruitment and bacteriome development.Electronic supplementary materialThe online version of this article (doi:10.1186/s13227-016-0061-7) contains supplementary material, which is available to authorized users.

Highlights

  • Many insects host their obligate, maternally transmitted symbiotic bacteria in specialized cells called bacteriocytes

  • In interpreting the developmental atlas of amino acid/auxin permease (AAAP)-536 and APC-8904 expression, we propose that these amino acid transporters play novel roles in endocytosis of Buchnera by aphid blastula and in bacteriocyte development during asexual aphid embryogenesis

  • Strong expression of AAAP-536 was identified in the region of the bacteria during the time that the bacterial mass was mixing with the posterior syncytial nuclei

Read more

Summary

Introduction

Many insects host their obligate, maternally transmitted symbiotic bacteria in specialized cells called bacteriocytes. One of the best-studied insect nutritional endosymbioses is that of the aphid and its endosymbiont, Buchnera aphidicola. Aphids and Buchnera are metabolically and developmentally integrated, but the molecular mechanisms underlying Buchnera transmission and coordination with aphid development remain largely unknown. Previous work using electron microscopy to study aphid asexual embryogenesis has revealed that Buchnera transmis‐ sion involves exocytosis from a maternal bacteriocyte followed by endocytotic uptake by a blastula. We shed light on the molecular mechanisms that regulate Buchnera transmission and developmental integration. One ovariole contains a series of embryos at various developmental stages [13]. Cellularization of the syncytial nuclei generates the blastula embryo. Primordial germ cells that are specified in the posterior region of the blastula separate the remaining uncellularized syncytial nuclei into two locations: (1) the central syncytium (in the center of the blastoderm) and (2) the posterior syncytium (at the posterior end of the blastoderm) [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call