Abstract

Arginine, and several other amino acids, can only support growth of Arthrobacter pyridinolis if malate is also present in the medium. Arginine is transported by a high affinity lysine-arginine-ornithine-type transport system which is stimulated by malate in both whole cells and vesicles, is respiration-coupled, and appears to depend upon a respiration-generated membrane potential but not on a ΔpH. Arginine is also transported by a low-affinity system which transports canavanine. Studies of an arginine auxotroph suggest that the lysine-arginine-ornithine system may be the system of major physiological significance for arginine transport. Phenylalanine is one of a few amino acids which can act as sole source of carbon for A. pyridinolis. Transport of phenylalanine occurs by two kinetically distinct systems. Both of these transport systems are respiration-coupled, are not appreciably stimulated by malate either in cells or vesicles, but are markedly stimulated by ascorbate-phenazine methosulfate. Studies with inhibitors indicate that the transport systems for phenylalanine utilize both a ΔpH and a membrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.