Abstract

We investigated the contribution of quinolone resistance-determining region (QRDR) mutations to fluoroquinolone (enrofloxacin, orbifloxacin and danofloxacin) susceptibility in 58 Mycoplasma bovis isolates from dairy cattle in Japan. Fluoroquinolone non-resistant isolates (fluoroquinolone-MICs≤2 μg/ml) possessed no QRDR mutations (19 isolates) or Ser83Leu in GyrA (32 isolates). Fluoroquinolone-resistant isolates (fluoroquinolone-MICs≥4 μg/ml) possessed Ser83Leu in GyrA and Ser81Pro in ParC (3 isolates) or Ser83Phe in GyrA and Ser80Ile in ParC (4 isolates). Laboratory-derived fluoroquinolone-resistant mutants selected from 2 isolates (possessing Ser83Leu in GyrA) had an amino acid substitution in ParC at the same position (Ser80Ile or Ser81Tyr) as fluoroquinolone-resistant isolates, suggesting a concurrent amino acid substitution in ParC (Ser80 or Ser81) is important in fluoroquinolone resistance in M. bovis isolates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.