Abstract

The 5-hydroxytryptamine type 3 (5-HT3) receptor is a member of the Cys-loop superfamily of ligand-gated ion channels (LGICs) and modulated by pharmacologic relevant concentrations of volatile anesthetics or n-alcohols like most receptors of LGICs. The goal of this study was to reveal whether the site-directed single mutations of E-106, F-107 and R-222 in 5-HT3 receptor may affect the anesthetic modulation of halothane known as positive modulator. The wild-type and mutant receptors, E106D, F107Y, R222F, R222V, were expressed in Xenopus Laevis oocytes and receptor function was assessed using two electrode voltage clamp techniques. E106D, F107Y, R222F, R222V mutant 5-HT3A receptors were functionally expressed. F107Y mutant 5-HT3A receptors displayed decreased sensitivity to 5-HT compared to the wild type 5-HT3A receptor (P < 0.05). Halothane showed positive modulation in both wild and F107Y mutant 5-HT3A receptors but F107Y mutant 5-HT3 receptor showed greater enhancing modulation comparing to wild-type receptor. Meanwhile, R222F and R222V mutant 5-HT3 receptor lost positive modulation with 1 and 2 MAC of halothane. Most interestingly, positive modulation by halothane was converted into negative modulation in E106D mutant 5-HT3A receptor. The present study implicate the amino acid residues known for agonist binding and linking agonist binding to channel gating might also have important role for anesthetic modulation in 5-HT3A receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call