Abstract

[Abstract] Amino acid racemases are enzymes that invert the α-carbon stereochemistry of amino acids (AAs), interconverting amino acids between their Land D-enantiomers in a reversible reaction. In bacteria, they are known to have catabolic physiological functions but are also involved in the synthesis of many D-AAs, including D-glutamate and D-alanine, which are necessary components of the peptidoglycan layer of the bacterial cell wall. As such, amino acid racemases represent significant targets for the development of bactericidal compounds. Amino acid racemases are also regarded by the biotechnological industry as important catalysts for the production of economically relevant D-AAs. Here, we provide a detailed protocol using high performance liquid chromatography (HPLC) and 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (FDAA, also Marfey’s reagent) for the characterization of novel amino acid racemases. The protocol described here was designed to obtain accurate kinetic parameters (kcat, KM values). Enzyme concentrations and reaction times were optimized so as to minimize the reverse reaction, which can confound results when measuring racemase reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.