Abstract

Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis), where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH) and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work unravels (i) interesting physiological property of C. neoformans regarding its amino acid uptake system; (ii) an important aspect of virulence, which is the need for amino acid permeases during thermal and oxidative stress resistance and, hence, host invasion and colonization; and (iii) provides a convenient prototype for antifungal development, which are the amino acid permeases Aap4/Aap5 and their inhibitor.

Highlights

  • Microorganisms are highly exposed to environmental changes

  • Our previous data showed that permeases genes AAP3 and AAP7 are not expressed in YEPD, synthetic dextrose (SD) added with ammonium sulfate and SD added with amino acids; AAP6 displayed no transcriptional change according to nitrogen source and AAP8 showed increased expression in the presence of amino acids only; permeases AAP2, 4 and 5 had the highest transcriptional induction in the presence of amino acids (24, 49 and 111-fold induction respectively)

  • A series of articles have shown that amino acid biosynthetic pathways are very important during host invasion in C. neoformans and, have a potential as drug targets [28,29,30,31,32,33,34]

Read more

Summary

Introduction

Microorganisms are highly exposed to environmental changes. The quick response to unstable conditions may be decisive to their survival [1]. That is the case of the basidiomycete C. neoformans, which is frequently found on decomposed wood, pigeon guano and soil [9,10,11] It can infect and cause disease in animals, such as cats, goats, koalas [9,11]. C. neoformans causes fungal meningoencephalitis, a disease that is very common among immunocompromised patients due to AIDS, organ transplantation and those undergoing chemotherapy [12,13,14]. The course of the disease starts when spores or desiccated yeast cells are inhaled and can establish pulmonary infection, which can be cleared in an immunocompetent host or progress to fungal meningitis, leading to a serious condition in immunocompromised patients, [10,15]. Cryptococcosis is one of the most important causes of mortality/morbidity in HIV/ AIDS patients, with an estimated 624.700 deaths/year, mainly in sub-Saharan Africa [16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call