Abstract

In this study, we have analyzed experimentally the helical intrinsic propensities of non-charged and non-aromatic residues at different C-terminal positions (C1, C2, C3) of an Ala-based peptide. The effect was found to be complex, resulting in extra stabilization or destabilization, depending on guest amino acid and position under consideration. Polar (Ser, Thr, Cys, Asn, and Gln) amino acids and Gly were found to have significantly larger helical propensities at several C-terminal positions compared with the alpha-helix center (-1.0 kcal/mole in some cases). Some of the nonpolar residues, especially beta-branched ones (Val and Ile) are significantly more favorable at position C3 (-0.3 to -0.4 kcal/mole), although having minor differences at other C-terminal positions compared with the alpha-helix center. Leu has moderate (-0.1 to -0.2 kcal/mole) stabilization effects at position C2 and C3, whereas being relatively neutral at C1. Finally, Met was found to be unfavorable at C1 and C2 ( +0.2 kcal/mole) and favorable at C3 (-0.2 kcal/mole). Thus, significant differences found between the intrinsic helical propensities at the C-terminal positions and those in the alpha-helix center must be accounted for in helix/coil transition theories and in protein design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.