Abstract

The quorum-sensing signaling systems in Vibrio bacteria converge to control levels of the master transcription factors LuxR/HapR, a family of highly conserved proteins that regulate gene expression for bacterial behaviors. A compound library screen identified 2-thiophenesulfonamide compounds that specifically inhibit Vibriocampbellii LuxR but do not affect cell growth. We synthesized a panel of 50 thiophenesulfonamide compounds to examine the structure-activity relationship effects on Vibrio quorum sensing. The most potent molecule identified, PTSP (3-phenyl-1-(thiophen-2-ylsulfonyl)-1H-pyrazole), inhibits quorum sensing in multiple strains of V.vulnificus, V.parahaemolyticus, and V.campbellii at nanomolar concentrations. However, thiophenesulfonamide inhibition efficacy varies significantly among Vibrio species: PTSP is most inhibitory against V.vulnificus SmcR, but V.cholerae HapR is completely resistant to all thiophenesulfonamides tested. Reverse genetics experiments show that PTSP efficacy is dictated by amino acid sequence in the putative ligand-binding pocket: F75Y and C170F SmcR substitutions are each sufficient to eliminate PTSP inhibition. Further, in silico modeling distinguished the most potent thiophenesulfonamides from less-effective derivatives. Our results revealed the previously unknown differences in LuxR/HapR proteins that control quorum sensing in Vibrio species and underscore the potential for developing thiophenesulfonamides as specific quorum sensing-directed treatments for Vibrio infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.