Abstract

Like most other surface-exposed antigens of Plasmodium falciparum, the leading malaria vaccine candidate merozoite surface protein (MSP)-1 contains a large number of dimorphic amino acid positions. This type of diversity is presumed to be associated with parasite immune evasion and represents one major obstacle to malaria subunit vaccine development. To understand the precise role of antigen dimorphism in immune evasion, we have analyzed the flexibility of CD4 T cell immune responses against a semi-conserved sequence stretch of the N-terminal block of MSP-1. While this sequence contains overlapping promiscuous T cell epitopes and is a target for growth inhibitory antibodies, three dimorphic amino acid positions may limit its suitability as component of a multi-epitope malaria vaccine. We have analyzed the CD4 T cell responses in a group of human volunteers immunized with a synthetic malaria peptide vaccine containing a single MSP-143-53 sequence variant. All human T cell lines and HLA-DR- or -DP-restricted T cell clones studied were exclusively specific for the sequence variant used for immunization. Competition peptide binding assays with affinity-purified HLA-DR molecules indicated that dimorphism does not primarily affect HLA binding. Modeling studies of the dominant restricting HLA-DRB1*0801 molecule showed that the dimorphic amino acids represent potential TCR contact residues. Lack of productive triggering of the TCR by MHC/variant peptide ligand complexes thus seems to be the characteristic feature of parasite immune evasion associated with antigen dimorphism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.