Abstract

ABSTRACT The chemical composition and amino acids (AA) digestibility were determined in insect meals from mealworms, crickets, black soldier fly (BSF) larvae and BSF prepupae, and soybean meal. Six caecectomised laying hens were individually housed in metabolism cages and fed either a basal diet or one of five assay diets. Diets and hens were arranged in a 6 × 6 Latin square design with 6 subsequent periods. In each period, the laying hens were fed their respective diet for 9 d, and excreta samples were quantitatively collected twice daily from day 5 to 8. On day 9, a sterile plastic bag was attached to the cloaca of each hen to collect excreta for microbiota analysis. The AA digestibility of the insect meals and soybean meal were calculated using a linear regression approach. Crude protein (CP) concentrations in crickets and mealworms were higher than the value in soybean meal, BSF prepupae and BSF larvae. Ether extract concentrations were high in the insect meals and low in the soybean meal. The digestibility of most essential AA in soybean meal was higher (p < 0.05) than in crickets and BSF prepupae and not different from AA digestibility in mealworms and BSF larvae (except for arginine and histidine). The gene copy number of Escherichia coli in excreta from hens fed with BSF prepupae was lower (p < 0.05) than those fed with BSF larvae, whereas the gene copy number of Bacillus spp. and Clostridium spp. in excreta from hens fed with crickets was lower (p < 0.05) than those fed with BSF larvae. In conclusion, the chemical composition and AA digestibility varied among insect meals based on insect species and life stage. The high level of AA digestibility of insect meals supports the assessment that insect meals are a suitable feed component for laying hens, but differences in AA digestibility should be considered in diet formulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call