Abstract
Apoptosis and autophagy are closely interconnected types of programmed cell death. In the present study, mouse C2C12 muscle cells were starved in Earle's Balanced Salt Solution or treated with TNF-alpha and cycloheximide to induce autophagy and apoptosis, respectively. The majority of starved C2C12 cells underwent autophagy, as shown by LC3 processing, formation of autophagic vesicles and bulk degradation of long-lived proteins. However, some cells showed features of apoptosis including caspase-3 cleavage, chromatin condensation, DNA fragmentation and annexin V labeling. Caspase-3 cleavage was also induced in culture medium without serum, suggesting that serum withdrawal rather than amino acid deprivation triggered apoptosis. Starvation eliminated multiple pro-apoptotic proteins, but upregulated caspase-8, and rendered starved C2C12 cells much more susceptible to TNF-alpha/cycloheximide-induced apoptosis than non-starved cells. Our data suggest that amino acid deprivation of C2C12 cells induces a complex form of cell death with hallmarks of both apoptosis and autophagy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.