Abstract

The Photosystem II (PSII) core antenna chlorophyll a-binding protein, CP47, contains six membrane-spanning alpha-helices separated by five hydrophilic loops: A-E. To identify important hydrophilic cytosolic regions, oligonucleotide-directed mutagenesis was employed to introduce short segment deletions into loops B and D, and the C-terminal domain. Four strains carrying deletions of between three and five residues were created in loop B. Two strains, with deletions adjacent to helices II and III, did not assemble PSII; however, the mutants delta(F123-D125) and delta(R127-S131) remained photoautotrophic with near wild-type levels of assembled reaction centers. In contrast, all deletions introduced into loop D, connecting helices IV and V, failed to assemble significant levels of PSII and were obligate photoheterotrophic mutants. However, deletions in the C-terminal domain did not prevent the assembly of PSII reaction centers although the mutant delta(S471 -T473), with a deletion adjacent to helix V1, exhibited retarded Q(A)- oxidation kinetics and the PSII-specific herbicide, atrazine, bound less tightly in the delta(S471-T473) and delta(F475-D477) strains. Deletions in the C-terminal domain also created mutants with large protein aggregates that were recognized by an antibody raised against the PSII reaction center D1 protein. Low-temperature fluorescence emission spectra of photoautotrophic strains carrying deletions in either the C-terminal domain or loop B did not provide evidence for impaired energy transfer from the phycobilisomes to the PSII reaction center. The data therefore suggest an important structural role for loop D in the assembly of PSII and a potential interaction between the C-terminal domain of CP47 and the PSII reaction center that, when perturbed, results in photoinduced protein aggregates involving the D1 protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.