Abstract
The absolute configuration dictates the biological role of chiral molecules in the living world. This is best exemplified by all ribosomally synthesized polypeptides having chiral amino acids only in the l-configuration. However, d-amino acids are also associated with various vital biological processes such as peptidoglycan of the bacterial cell wall, ligands for neurotransmitters, molecules involved in signaling, and precursors of metabolites, to name a few. The occurrence of both l- and d-enantiomers of amino acids in the living systems necessitates the presence of enzymes that exhibit stereoselectivity in recognition of substrates. This mini-review summarizes the overall mechanistic insights into the interconversion of l- and d-amino acids by the amino acid racemases. We discuss the structural, mechanistic, and evolutionary relationship of four crucial enzymes that catalyze the oxidative deamination of l- or d-amino acids and their physiological role in microbes and higher organisms. We highlight the physiological implications of d-amino acid oxidase and d-aspartate oxidase in human health and diseases and their applications as drug targets. Finally, we summarize the potential applications of microbially obtained chiral-selective enzymes as biocatalysts and for various industrial purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.