Abstract
Natively unfolded proteins play key roles in normal and pathological biochemical processes. This category of proteins remains, however, beyond the reach of classical structural biology because of their inherent conformational heterogeneity. When confined in weakly aligning media, natively unfolded proteins such as α-synuclein, the major component of abnormal aggregates in the brain of patients with Parkinson's disease, display surprisingly variable NMR dipolar couplings as a function of position along the chain, suggesting the presence of residual secondary or tertiary structure. Here we show that the variation of NMR dipolar couplings and heteronuclear relaxation rates in α-synuclein closely follows the variations of the bulkiness of amino acids along the polypeptide chain. Our results demonstrate that the bulkiness of amino acids defines the local conformations and dynamics of α-synuclein and other natively unfolded proteins. Deviations from this random coil behavior can provide insight into residual secondary structure and long-range transient interactions in unfolded proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.