Abstract

Eight receptors 1–8 comprising an l-lysine scaffold modified at N- and C-termini with aliphatic alkyl chains and N,N′-alkyl amides, respectively, and bearing squaramide moieties on the amino acid side chain were synthesised by a combination of solid- and solution-phase chemistries and shown to complex various anions in 0.5% H2O in dimethyl sulfoxide-d6 solution. All of the receptors were found to bind Cl− , AcO− and BzO− via hydrogen-bond or acid–base interactions with the squaramide protons; however, 1 was found to bind to via hydrogen bonds formed between the anion and both the squaramide and amide NH moieties. Moreover, modification of both the N- and C-termini of the amino acids with different alkyl substituents had a negligible effect on their anion-binding properties while simultaneously conferring lipophilicities in a range that is optimal for molecules to behave as ‘drug-like’ systems as defined by Lipinski's rule of five. The results of this study demonstrate the versatility of such amino acid receptors as building blocks in the field of anion recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.