Abstract

Amino acids have emerged as potent modulators of the mTOR/p70 S6 kinase pathway. The involvement of this pathway in the regulation of insulin-stimulated glucose transport was investigated in the present study. Acute exposure (1 h) to a balanced mixture of amino acids reduced insulin-stimulated glucose transport by as much as 55% in L6 muscle cells. The effect of amino acids was fully prevented by the specific mTOR inhibitor rapamycin. Time course analysis of insulin receptor substrate 1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity revealed that incubation with amino acids speeds up its time-dependent deactivation, leading to a dramatic suppression (-70%) of its activity after 30 min of insulin stimulation as compared with its maximal activation (5 min of stimulation). This accelerated deactivation of PI 3-kinase activity in amino acid-treated cells was associated with a concomitant and sustained increase in the phosphorylation of p70 S6 kinase. In marked contrast, inhibition of mTOR by rapamycin maintained PI 3-kinase maximally activated for up to 30 min. The marked inhibition of insulin-mediated PI 3-kinase activity by amino acids was linked to a rapamycin-sensitive increase in serine/threonine phosphorylation of IRS-1 and a decreased binding of the p85 subunit of PI 3-kinase to IRS-1. Furthermore, amino acids were required for the degradation of IRS-1 during long term insulin treatment. These results identify the mTOR/p70 S6 kinase signaling pathway as a novel modulator of insulin-stimulated glucose transport in skeletal muscle cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call