Abstract

Amine-containing compounds bear a nitrogen atom that’s ready to interact with proteins thanks to its lone pair of electrons; these molecules often have desirable biological properties. One of the most popular methods for making primary amines involves coupling ammonia and an aldehyde or ketone in a reductive amination reaction. The downside of this transformation is that it usually requires a precious-metal catalyst. Chemists led by Matthias Beller of the Leibniz Institute for Catalysis have now created a non-precious-metal catalyst that can make primary, secondary, tertiary, and N-methylamines via reductive amination. The catalyst consists of cobalt nanoparticles encased in a carbon shell (Science 2017, DOI: 10.1126/science.aan6245). Beller and colleagues make the nanoparticles by assembling a cobalt-diamine-dicarboxylic acid metal-organic framework on a carbon template and then heating this assembly to 800 °C. The chemists used the catalyst nanoparticles to make more than 140 amines, including several p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.