Abstract
1. Neuromodulators can effect changes in neural network function by strengthening or weakening synapses between neurons via presynaptic control of transmitter release. We have examined the effects of two biogenic amines on inhibitory connections of a spinal rhythm generator in Xenopus tad poles. 2. Glycinergic inhibitory potentials occurring mid-cycle in motoneurons during swimming activity are reduced by 5-hydroxytryptamine (5-HT; serotonin) and enhanced by noradrenaline (NA). These opposing effects on inhibitory synaptic strength are mediated presynaptically where 5-HT decreases and NA increases the probability of glycine release from inhibitory terminals. 3. The amines also have contrasting effects on swimming: 5-HT increased motor burst durations while NA reduced swimming frequency. Aminergic modulation of glycinergic transmission may thus control fundamental parameters of swimming and force the spinal network to generate opposite extremes of its spectrum of possible outputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.