Abstract

A biomass-based catalyst with amine groups (–NH2), viz., amine-functionalized sugarcane bagasse (SCB-NH2), was prepared through the amination of sugarcane bagasse (SCB) in a two-step process. The physicochemical properties of the catalyst were characterized through FT-IR, elemental analysis, XRD, TG, and SEM-EDX techniques, which confirmed the –NH2 group was grafted onto SCB successfully. The catalytic performance of SCB-NH2 in Knoevenagel condensation reaction was tested in the batch and continuous flow reactions. Significantly, it was found that the catalytic performance of SCB-NH2 is better in flow system than that in batch system. Moreover, the SCB-NH2 presented an excellent catalytic activity and stability at the high flow rate. When the flow rate is at the 1.5 mL/min, no obvious deactivation was observed and the product yield and selectivity are more than 97% and 99% after 80 h of continuous reaction time, respectively. After the recovery of solvent from the resulting solution, a white solid was obtained as a target product. As a result, the SCB-NH2 is a promising catalyst for the synthesis of fine chemicals by Knoevenagel condensation reaction in large scale, and the modification of the renewable SCB with –NH2 group is a potential avenue for the preparation of amine-functionalized catalytic materials in industry.

Highlights

  • The Knoevenagel condensation, as one of the most classic methods for carbon-carbon bond formation in organic synthesis [1], is widely employed in the synthesis of high value-added chemicals such as therapeutic drugs, natural products, fine chemicals, carbocyclic and heterocyclic compounds of biological significance [2]

  • Peaks at 1427, 1398, 1163, 1058, and 898 cm−1 are assigned to the characteristic vibrations of cellulose [35]; and the peak at 1735 cm−1 is assigned to the stretching vibration of acetyl groups attached to hemicellulose in the raw material [36]

  • It is believed that this renewable sugarcane bagasse (SCB)-NH2 with excellent performance possesses potential and broad prospects in organic synthesis or catalysis

Read more

Summary

Introduction

The Knoevenagel condensation, as one of the most classic methods for carbon-carbon bond formation in organic synthesis [1], is widely employed in the synthesis of high value-added chemicals such as therapeutic drugs, natural products, fine chemicals, carbocyclic and heterocyclic compounds of biological significance [2] This reaction is proceeded in the presence of a basic catalyst through the nucleophilic addition of a carbanion to an electrophilic carbonyl group followed by a spontaneous dehydration process [3]; and the relatively weak base catalysts, viz., amine catalysts (such as aliphatic amines, urea and piperidine) or ammonia and their salts, are the preferred choices [4]. Compared with traditional batch systems, the product yield, selectivity, Molecules 2018, 23, 43; doi:10.3390/molecules23010043 www.mdpi.com/journal/molecules

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call