Abstract

Carbon dioxide (CO2) has been shown to contribute to human health consequences indoors, such as shortness of breath, nasal and optic irritation, dizziness, and nausea. In this work, we explore the potential of metal–organic frameworks (MOFs) as highly-porous, crystalline sorbents for sensitive colorimetric CO2 detection. In particular, the zeolitic imidazolate framework (ZIF-8) is chosen as the sorptive material due to its chemical stability and tunable CO2 affinity. The colorimetric gas sensor is developed in methanol with three components: (i) MOF ZIF-8 as a high surface area adsorbent; (ii) ethylenediamine (ED) as the CO2-affinitive basic function; and (iii) phenolsulfonpthalein (PSP) as the pH indicator. Colorimetric assays and ratiometric analysis confirm a colorimetric response to variable CO2 concentrations of relevance to indoor air quality. The color response is attributed to a zwitterion mechanism whereby ED reacts with CO2 to form a zwitterionic intermediate. This intermediate is then deprotonated by the pH indicator, shifting the pH and inducing a color change. Given its simple fabrication, rapid and obvious response, and stability in ambient environment, the ZIF-8-based colorimetric sensor provides a promising route for an improved indoor air quality monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call