Abstract
The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also demonstrated that H2-release from chemical hydrides can occur by a number of different mechanistic pathways and strongly suggest that optimal chemical hydride based H2release systems may require the use of synergistic dehydrogenation methods to induce H2-loss from chemically different intermediates formed during release reactions. The efficient regeneration of ammonia borane from BNHx spent fuel is one of the most challenging problems that will have to be overcome in order to utilize AB-based hydrogen storage. Three Center partners, LANL, PNNL and Penn, each took different complimentary approaches to AB regeneration. The Penn approach focused on a strategy involving spent-fuel digestion with superacidic acids to produce boron-halides (BX3) that could then be converted to AB by coordination/reduction/displacement processes. While the Penn boron-halide reduction studies successfully demonstrated that a dialkylsulfide-based coordination/reduction/displacement process gave quantitative conversions of BBr3 to ammonia borane with efficient and safe product separations, the fact that AB spent-fuels could not be digested in good yields to BX3 halides led to a No-Go decision on this overall AB-regeneration strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.