Abstract

This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO2 capture station and to issues related to exhaust gas recirculation in combined cycles.The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.