Abstract
The cytoplasmic and vacuolar pH and changes thereof in the presence of ammonia (NH(4)Cl) and methylamine (CH(3)NH(3)Cl) have been measured in rhizoid cells of Riccia fluitans by means of a pH-sensitive microelectrode.On addition of 1 micromolar NH(4)Cl, the cytoplasmic pH of 7.2 to 7.4 drops by 0.1 to 0.2 pH units, but shifts to pH 7.8 in the presence of 50 micromolar NH(4)Cl or 500 micromolar CH(3)NH(3)Cl. The pH of the vacuole increases drastically from 4.5 to 5.7 with these latter concentrations. Since a NH(4) (+)/CH(3)NH(3) (+) uniporter has been demonstrated in the plasmalemma of R. fluitans previously (Felle 1983 Biochim Biophys Acta 602:181-195), the concentration-dependent shifts of cytoplasmic pH are interpreted as results of two processes: first, acidification through deprotonation of the actively transported NH(4) (+); and second, alkalinization through protonation of NH(3) which is taken up to a significant extent from high external concentrations. Furthermore, it is concluded that the determination of intracellular pH by means of methylamine distribution is not a reliable method for eucaryotic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.