Abstract
AbstractPoly(lactide‐co‐glycolide) (PLGA) nanoparticles (NPs) represent a promising tool for effective delivery of biomacromolecules, thanks to their biodegradability and biocompatibility properties. PLGA NPs are often synthesized by the emulsion‐solvent evaporation method and poly(vinyl alcohol) (PVA) represents one of the most commonly used surfactants. Although PVA‐mediated synthesis of PLGA NPs is effective in tailoring NP size and stability, the resulting negative surface charge can prevent both endosomal escape and biomacromolecule release in cell cytosol. To overcome this limit, a novel amino‐modified PVA (amino‐PVA) surfactant with a cationic charge was synthesized and its potential for the formulation of PLGA NPs was investigated. In either single (oil‐in‐water) or double (water‐in‐oil‐in‐water) emulsion synthesis, different mixtures of PVA and amino‐PVA were studied, by monitoring their effects on NP size and surface charge. Optimized properties were obtained with a combination of 0.975% (w/v) of PVA with 0.025% (w/v) of amino‐PVA. This formulation was further investigated for degradation properties and cytocompatibility. High stability and low cytotoxicity make the system promising for the encapsulation and release of hydrophilic drugs and biomacromolecules. © 2016 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.