Abstract

Highly efficient heterogeneous catalysts are desired for the development of new energy storage materials. The rational choice and use of capping ligands are of significant importance for performance optimization of metal nanoparticle (NP) catalysts. By exploiting amine-rich polyethylenimine (PEI) and graphene oxide (GO) as a NP support, we demonstrate that as a capping ligand, PEI deposited on GO provides a novel pathway able to simultaneously control the morphology, spatial distribution, surface active sites of cobalt (Co) NPs, and remarkably enhances their catalytic properties for the hydrolytic dehydrogenation of ammonia borane (AB). Such a synergistic effect enables the synthesized PEI-GO/Co catalysts to reveal extremely high dehydrogenation activities under atmosphere condition. A total turnover frequency of 39.9 molH2 min(-1) molCo(-1) and an apparent activation energy of 28.2 kJ mol(-1) make the catalytic performance of these PEI-GO/Co catalysts comparable to those of noble metal-based catalysts, including bimetallic and multimetallic catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.