Abstract

We studied the structure and transport properties of aromatic amine self-assembled monolayers (NH2-SAMs) on an Au surface. The oligophenylene and oligoacene amines with variable lengths can form a densely packed and uniform monolayer under proper assembly conditions. Molecular junctions incorporating an eutectic Ga-In (EGaIn) top electrode were used to characterize the charge transport properties of the amine monolayer. The current density J of the junction decreases exponentially with the molecular length (d), as J = J0 exp(-βd), which is a sign of tunneling transport, with indistinguishable values of J0 and β for NH2-SAMs of oligophenylene and oligoacene, indicating a similar molecule-electrode contact and tunneling barrier for two groups of molecules. Compared with the oligophenylene and oligoacene molecules with thiol (SH) as the anchor group, a similar β value (∼0.35 Å-1) of the aromatic NH2-SAM suggests a similar tunneling barrier, while a lower (by 2 orders of magnitude) injection current J0 is attributed to lower electronic coupling Γ of the amine group with the electrode. These observations are further supported by single-level tunneling model fitting. Our study here demonstrates the NH2-SAMs can work as an effective active layer for molecular junctions, and provide key physical parameters for the charge transport, paving the road for their applications in functional devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call