Abstract

Our previous studies have revealed that the aminated 1,4-quinone scaffold can be used for the development of novel antibacterial and/or antifungal agents. In this study, the aminated quinolinequinones (AQQ1-9) were designed, synthesized, and evaluated for their antimicrobial activity against a panel of seven bacterial strains (three Gram-positive and four Gram-negative bacteria) and three fungal strains. The structure-activity relationship (SAR) for the QQs was also summarized. The antibacterial activity results indicated that the two aminated QQs (AQQ6 and AQQ9) were active against Enterococcus faecalis (ATCC 29212) with a MIC value of 78.12 μg/mL. Besides, the two aminated QQs (AQQ8 and AQQ9) were active against Staphylococcus aureus (ATCC 29213) with MIC values of 4.88 and 2.44 μg/mL, respectively. The most potent aminated QQs (AQQ8 and AQQ9) were identified as promising lead molecules to further explore their mode of action. The selected QQs (AQQ8 and AQQ9) were further evaluated in vitro to assess their potential antimicrobial activity against each of 20 clinically obtained methicillin-resistant S. aureus isolates, antibiofilm activity, and bactericidal activity using time-kill curve assay. We found that the molecules prevented adhesion of over 50% of the cells in the biofilm. Molecular docking studies were performed to predict the predominant binding mode(s) of the ligands. We believe that the molecules need further investigation, especially against infections involving biofilm-forming microbes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.