Abstract

Electrospun nanofibers have been successfully applied to remove toxic and carcinogenic contaminants such as heavy metals from polluted water. In this study, an efficient adsorbent based on poly(ethylene terephthalate) (PET) nanofibers was developed following a cheap, versatile and scalable process. PET nanofibers were first produced by electrospinning, and their surface was chemically functionalized using a simple aminolysis process. The capacity of the resulting material to adsorb Pb(II) from synthetic solutions was evaluated as a function of the contact time, pH, and initial metal ion concentration. The adsorbent system presented a quick kinetic adsorption, reaching an extremely high maximum adsorption capacity of about 50 millimol (mmol) of Pb(II) per gram of adsorbent system after just 30 min. Moreover, the effect of competing metal ions, such as Ni(II), Cd(II) and Cu(II), was studied at different molar ratios. Finally, when tested in continuous flow mode, aminated PET (APET) nanofibers were able to remove 97% of Pb(II) ions in solution, demonstrating their potential for the remediation of heavy metal-contaminated water.

Highlights

  • The pollution of water by heavy metals has been considered a major threat to the environment and living organisms

  • % (PET-3)on resulted in processing an increase parameters and environmental conditions

  • 126.2 μS/cm, improving theconcentration, stability of the electrospinning the viscosity of the solutions significantly affect the electrospinning process and the nanofiber process and reaching a smaller nanofiber diameter (488 nm) with a narrow range [42]

Read more

Summary

Introduction

The pollution of water by heavy metals has been considered a major threat to the environment and living organisms. Metals such as copper, nickel, lead, and cadmium can be harmful to human health even at very low concentrations, as they tend to accumulate, thereby physiologically and/or neurologically affecting exposed individuals [1]. Various types of adsorbents, such as activated carbons, natural zeolites, biosorbents or chelating materials, have been studied as adsorbent systems to extract metal ions from aqueous solutions. The properties of these adsorbents depend on their surface-area-to-volume ratio and on the functional groups on their surfaces [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call