Abstract

ABSTRACT Biomagnifications of emergent contamination with diclofenac in aquatic media exert adverse effects on ecosystems and the environment. Hence, employing an effective remediation route, especially magnetic adsorption, is highly beneficial to eliminating hazardous pharmaceutical wastes. In this research, an efficient magnetic nanoadsorbent derived from aminated manganese ferrite, cellulose, and graphene oxide (GO) has been characterized and employed for diclofenac (DF) removal. Results of EDX analysis showed that aminopropyltriethoxysilane, as an amine source, have been anchored on the magnetic adsorbent surface with high density. Moreover, FESEM and TEM images, as well as the XRD pattern, confirmed that the nanocomposite is a three-component adsorbent. Response surface methodology was adopted to optimize effective parameters for DF adsorption. Solution pH, contact time, adsorbent amount, and concentration of NaNO3 were four variables that have been optimized. Kinetic and isotherm studies for the adsorption experiments showed that diclofenac adsorption followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm. Moreover, the thermodynamic study indicated that the adsorption process is spontaneous and follows an exothermic path. With a high maximum adsorption capacity of 439.0 mg.g−1 and an adequate removal efficiency of 98.0%, the aminated MnFe2O4-cellulose-GO is a suitable candidate to mitigate the side effects of DF in aqueous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call