Abstract

ObjectiveThe aim of this study was to characterize the population pharmacokinetics of amikacin in elderly patients by means of nonlinear mixed effects modelling and to propose initial dosing schemes to optimize therapy based on PK/PD targets. MethodA total of 137 elderly patients from 65 to 94 years receiving intravenous amikacin and routine therapeutic drug monitoring at Hospital Universitario Severo Ochoa were included. Concentration–time data and clinical information were retrospectively collected; initial doses of amikacin ranged from 5.7 to 22.5 mg/kg/day and each patient provided between 1 and 10 samples. ResultsAmikacin pharmacokinetics were best described by a two-compartment open model; creatinine clearance (CrCL) was related to drug clearance (2.75 L/h/80 mL/min) and it was augmented 28% when non-steroidal anti-inflammatory drugs were concomitantly administered. Body mass index (BMI) influenced the central volume of distribution (17.4 L/25 kg/m2). Relative absolute prediction error was reduced from 33.2% (base model) to 17.9% (final model) when predictive performance was evaluated with a different group of elderly patients. A nomogram for initial amikacin dosage was developed and evaluated based on stochastic simulations considering final model to achieve PK/PD targets (Cmax/MIC>10 and AUC/MIC>75) and to avoid toxic threshold (Cmin<2.5 mg/L). ConclusionInitial dosing approach for amikacin was designed for elderly patients based on nonlinear mixed effects modeling to maximize the probability to attain efficacy and safety targets considering individual BMI and CrCL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.