Abstract

Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious agent that can establish latency in neurons, and in some cases, viral retrograde transport results in infection of the central nervous system (CNS). Several antivirals have been identified with the ability to inhibit HSV-1 replication in human cells to a greater or lesser degree, most of which are nucleoside analogues that unfortunately exhibit teratogenic potential, embryotoxicity, carcinogenic or antiproliferative activities and resistances in immunocompromised patients, specially. In the present study, we assessed two amidic derivatives of valproic acid (VPA) – valpromide (VPD) and valnoctamide (VCD) – which are already used in clinic treatments, as feasible HSV-1 antivirals in glial cells. Both VPD and VCD have exhibited increased efficacy in bipolar disorders and as anticonvulsant drugs compared to VPA, while being less teratogenic and hepatotoxic. Cytotoxicity assays carried out in our laboratory showed that VPD and VCD were not toxic in a human oligodendroglioma cell line (HOG), at least at the concentrations established for human treatments. Infectivity assays showed a significant inhibition of HSV-1 infection in HOG cells after VPD and VCD treatment, being more pronounced in VPD-treated cells, comparable to the effects obtained with acyclovir. Furthermore, the same antiherpetic effects of VPD were observed in other oligodendrocytic cell lines and rat primary oligodendrocytes (OPCs), confirming the results obtained in HOG cells. Altogether, our results allow us to propose VPD as a potential antiherpetic drug that is able to act directly on oligodendrocytes of the CNS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call