Abstract

Temperature coefficients have been measured for backbone amide (1)H and (15)N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283-313K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pK(a) values. (1)H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide (15)N coefficients have no clear relationship with structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.