Abstract

We make use of the known exchange rates of individual amide protons in the S-peptide moiety of ribonuclease S (RNAase S) to determine when during folding the α-helix formed by residues 3 to 13 becomes stable. The method is based on pulse-labeling with [ 3H]H 2O during the folding followed by an exchange-out step after folding that removes 3H from all amide protons of the S-peptide except from residues 7 to 14, after which S-peptide is separated rapidly from S-protein by high performance liquid chromatography. The slow-folding species of unfolded RNAase S are studied. Folding takes place in strongly native conditions (pH 6.0. 10 °C). The seven H-bonded amide protons of the 3–13 helix become stable to exchange at a late stage in folding at the same time as the tertiary structure of RNAase S is formed, as monitored by tyrosine absorbance. At this stage in folding, the isomerization reaction that creates the major slow-folding species has not yet been reversed. Our result for the 3–13 helix is consistent with the finding of Labhardt (1984), who has studied the kinetics of folding of RNAase S at 32 °C by fast circular dichroism. He finds the dichroic change expected for formation of the 3–13 helix occurring when the tertiary structure is formed. Protected amide protons are found in the S-protein moiety earlier in folding. Formation or stabilization of this folding intermediate depends upon S-peptide: the intermediate is not observed when S-protein folds alone, and folding of S-protein is twice as slow in the absence of S-peptide. Although S-peptide combines with S-protein early in folding and is needed to stabilize an S-protein folding intermediate, the S-peptide helix does not itself become stable until the tertiary structure of RNAase S is formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.