Abstract

In this study, we predicted the environmental fate of amide herbicides (AHs) using the EQC (EQuilibrium Criterion) model. We found that the soil phase is the main reservoir of AHs in the environment. Second, a toxicokinetic prediction indicated that butachlor have a low human health risk, while the alachlor, acetochlor, metolachlor, napropamide, and propanil are all uncertain. To address the environmental and human-health-related threats posed by AHs, 27 new proteins/enzymes that easily absorb, degrade, and mineralize AHs were designed. Compared with the target protein/enzyme, the comprehensive evaluation value of the new proteins/enzymes increased significantly: the absorption protein increased by 20.29–113.49%; the degradation enzyme increased by 151.26–425.22%; and the mineralization enzyme increased by 23.70–52.16%. Further experiments revealed that the remediating effect of 13 new proteins/enzymes could be significantly enhanced to facilitate their applicability under real environmental conditions. The hydrophobic interactions, van der Waals forces, and polar solvation are the key factors influencing plant–microorganism remediation. Finally, the simulations revealed that appropriate consumption of kiwifruit or simultaneous consumption of ginseng, carrot, and spinach, and avoiding the simultaneous consumption of maize and carrot/spinach are the most effective means reduce the risk of exhibiting AH-linked toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.