Abstract

Novel bacterial topoisomerase inhibitors (NBTIs) are new promising antimicrobials for the treatment of multidrug-resistant bacterial infections. In recent years, many new NBTIs have been discovered, however most of them struggle with the same issue - the balance between antibacterial activity and hERG-related toxicity. We started a new campaign by optimizing the previous series of NBTIs, followed by the design and synthesis of a new, amide-containing focused NBTI library to reduce hERG inhibition and maintain antibacterial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). This optimization strategy yielded the lead compound 12 that exhibits potent antibacterial activity against Gram-positive bacteria, reduced hERG inhibition, no cardiotoxicity in zebrafish model, and a favorable in vivo efficacy in a neutropenic murine thigh infection model of MRSA infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call