Abstract
The co-contamination of dyes and heavy metal ions often used as mordants poses potential risks to environment and public health, and is a challenging problem that needs to be solved in water treatment. Meanwhile, improving the solid-liquid separation capability of adsorbents is of great significance for the application of adsorption technology. Herein, amidation modified hollow composite microspheres were prepared using hollow glass microsphere (HGM) as matrix through hydrolysis and condensation of silane coupling agent (A-1100) and subsequent amidation reaction. The material (HGMNE) not only exhibited good adsorption performance for DB86 and Ni2+ but also had stable self-floating capability. The adsorption of DB86 by HGMNE is mainly carried out by the electrostatic interaction between positively charged quaternary amine nitrogen and negatively charged DB86, while the adsorption of Ni2+ is achieved by the carboxyl group in EDTA group through complexation interaction to adsorb Ni2+ to form Ni complex. This research not only is devoted to the utilization of HGMNE to achieve the co-removal of DB86 and Ni2+ and flexible self-floating solid-liquid separation but also verifies the feasibility and applicability of the modification method of introducing organic adsorption functional groups through amidation reaction, so as to expand the preparation path of HGM-based adsorbents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.