Abstract
Intention recognition is based on a dialog between users to identify their real intentions, which plays a key role in the question answering system. However, the content of a dialog is usually in the form of short text. Due to data sparsity, many current classification models show poor performance on short text. To address this issue, we propose AMFF, an attention-based multi-feature fusion method for intention recognition. In this paper, we enrich short text features by fusing features extracted from frequency-inverse document frequency (TF-IDF), convolutional neural networks (CNNs) and long short-term memory (LSTM). For the purpose of measuring the important features, we utilize the attention mechanisms to assign weights for the fusion features. Experimental results on the TREC, SST1 and SST2 datasets demonstrate that the proposed AMFF model outperforms traditional machine learning models and typical deep learning models on short text classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.