Abstract

This paper is concerned with the solution of the optimal stopping problem associated to the value of American options driven by continuous-time Markov chains. The value-function of an American option in this setting is characterised as the unique solution (in a distributional sense) of a system of variational inequalities. Furthermore, with continuous and smooth fit principles not applicable in this discrete state-space setting, a novel explicit characterisation is provided of the optimal stopping boundary in terms of the generator of the underlying Markov chain. Subsequently, an algorithm is presented for the valuation of American options under Markov chain models. By application to a suitably chosen sequence of Markov chains, the algorithm provides an approximate valuation of an American option under a class of Markov models that includes diffusion models, exponential Lévy models, and stochastic differential equations driven by Lévy processes. Numerical experiments for a range of different models suggest that the approximation algorithm is flexible and accurate. A proof of convergence is also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.