Abstract

Some flavonoids have been shown to exhibit good antioxidant activity and protect mice from damage induced by radiation. Amentoflavone (AMF), a biflavonoid derived from the traditional herb-Selaginella tamariscina, has been reported to have antioxidant properties. The protective effects and mechanism of action of AMF against radiation injury remain unknown. In this study, male C57BL/6 mice were subjected to total-body 60Co γ-irradiation at 7.5 or 3.0Gy. The survival rate and mean survival time were evaluated to determine the radioprotective effect of AMF. Number of peripheral blood cells, frequency of colony forming unit-granulocytes, monocytes and micronuclei were measured to assess the protective effects of AMF on the hematopoietic system. Levels of superoxide dismutase and glutathione, and pathological changes in the bone marrow were determined. Additionally, next-generation sequencing technology was used to explore potential targets of AMF. We observed that AMF markedly extends average survival time, reduces injury to the hematopoietic system and promotes its recovery. Furthermore, treatment with AMF significantly attenuated radiation-induced oxidative stress. In addition, AMF had a significant effect on gene tumor necrosis factor alpha-induced protein 2. Together, the results of this study suggest that AMF is a potential protective agent against radiation injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call