Abstract

Deposition of fibrillar forms of amyloid β-protein (Aβ) is commonly found in patients with Alzheimer’s disease (AD) associated with cognitive decline. Impaired clearance of Aβ species is thought to be a major cause of late-onset sporadic AD. Aβ secreted into the extracellular milieu can be cleared from the brain through multiple pathways, including cellular uptake in neuronal and non-neuronal cells. Recent studies have showed that the naturally-occurring polyphenol amentoflavone (AMF) exerts anti-amyloidogenic effects. However, its effects on metabolism and cellular clearance of Aβ remain to be tested. In the present study, we demonstrated that AMF significantly increased the cellular uptake of both Aβ1-40 and Aβ1-42, but not inverted Aβ42-1 in mouse neuronal N2a cells. Though AMF promoted internalization of cytotoxic Aβ1-42, it significantly reduced cell death in our assay condition. Our data further revealed that the internalized Aβ is translocated to lysosomes and undergoes enzymatic degradation. The saturable kinetic of Aβ uptake and our pharmacologic experiments showed the involvement of receptor-mediated endocytosis, in part, through the class A scavenger receptors as a possible mechanism of action of AMF. Taken together, our findings indicate that AMF can lower the levels of extracellular Aβ by increasing their cellular uptake and clearance, suggesting the therapeutic potential of AMF for the treatment of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.