Abstract
Trajectory prediction is critical for applications of planning safe future movements and remains challenging even for the next few seconds in urban mixed traffic. How an agent moves is affected by the various behaviors of its neighboring agents in different environments. To predict movements, we propose an end-to-end generative model named Attentive Maps Encoder Network (AMENet) that encodes the agent’s motion and interaction information for accurate and realistic multi-path trajectory prediction. A conditional variational auto-encoder module is trained to learn the latent space of possible future paths based on attentive dynamic maps for interaction modeling and then is used to predict multiple plausible future trajectories conditioned on the observed past trajectories. The efficacy of AMENet is validated using two public trajectory prediction benchmarks Trajnet and InD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.