Abstract
In this paper we study conditions on a Banach spaceX that ensure that the Banach algebraК(X) of compact operators is amenable. We give a symmetrized approximation property ofX which is proved to be such a condition. This property is satisfied by a wide range of Banach spaces including all the classical spaces. We then investigate which constructions of new Banach spaces from old ones preserve the property of carrying amenable algebras of compact operators. Roughly speaking, dual spaces, predual spaces and certain tensor products do inherit this property and direct sums do not. For direct sums this question is closely related to factorization of linear operators. In the final section we discuss some open questions, in particular, the converse problem of what properties ofX are implied by the amenability ofК(X).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.