Abstract

Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), one of the precursors of hydroxyapatite mineralization in vitro, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of the enamel protein amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto the surface of brushite, leading to the formation of layered morphology on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cells. Changes to the crystal morphology mediated by amelogenin continued even after the phase transformation from brushite to monetite, leading to the formation of organized platelets with an interlocked structure. This effect of amelogenin on brushite morphology and the phase transformation to monetite could provide a new approach to developing biomimetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.