Abstract

Exposure to benzo[a]pyrene (B[a]P), a major global food safety concern, is often associated with increasing incidence of colorectal cancers. This in-vitro study was focused on the identification of potential B[a]P-adsorbing Lactobacillus strains and evaluation of the ameliorative effect of synbiotic combination of selected Lactobacillus sp. and polyphenols (quercetin or resveratrol) against B[a]P-induced intestinal toxicity in Caco-2 cells. Preliminary studies lead to the selection of Lactiplantibacillus plantarum MTCC 25433 strain that showed 86% of B[a]P adsorption in 2 h as compared to L. rhamnosus GG that showed 74% of B[a]P adsorption. B[a]P adsorption by MTCC 25433 was reduced to 9%, 16% and 20% upon pre-treatment with SDS, NaIO4 and mutanolysin, attributing the involvement of cell wall proteins and polysaccharides in the adsorption. Additionally, peptidoglycan of both strains adsorbed >50% of B[a]P. In-vitro assays revealed that the selected LAB mitigated the B[a]P-induced epithelial cell damage. Among the polyphenols, quercetin, resveratrol and curcumin, varied in their potency to mitigate B[a]P-induced oxidative stress, with curcumin being least effective. Combinations of selected Lactobacillus sp. and polyphenols were more potent in averting B[a]P-induced toxicity via increase in GSH (17–30 %), SOD (50–88 %), catalase (19–45 %), and reduction in IL-8 secretion (14–28 %) and barrier dysfunction. Principal component analysis affirmed the superior potency of combination of L. plantarum MTCC 25433 and quercetin in averting B[a]P-induced toxicity. Overall, this study highlighted a novel promising strategy of synbiotic combination of Lactobacillus sp. and polyphenols (quercetin or resveratrol) in alleviating the B[a]P-induced toxicity in intestinal epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call