Abstract
The present study aims to assess the antidiabetic effect of Lactobacillus paracasei strain NL41 and its potential mechanisms in rats with type 2 diabetes mellitus (T2DM) induced by a high-fat diet and low-dose streptozotocin administration (HFD/STZ). Eighteen Sprague-Dawley (SD) rats are randomly assigned to three groups: one control, one HFD/STZ model, and one HFD/STZ-Lactobacillus protection group with administration of strain NL41 for 12 weeks. Blood is collected for biochemical parameters analysis and tissue samples for histological analysis. Treatment with strain NL41 results in excellent blood glucose regulation and significantly decreases insulin resistance, and HbA1c, glucagon, and leptin levels, accompanied by remarkable improvement of dyslipidemia and oxidative stress status in the animals. Islets of Langerhans, liver, and kidney are significantly protected in the NL41-treated rats compared to the HFD/STZ-T2DM model rats. Histochemistry shows that strain NL41 inhibits beta-cell loss and alpha-cell expansion, indicating pancreatic islets as the targeted tissues for the primary ameliorative effect of the probiotic strain on HFD/STZ-T2DM rats. Crosstalk between the gut-liver and liver-pancreas endocrine axes is discussed. Probiotic strain NL41 prevents HFD/STZ-T2DM by decreasing insulin resistance and oxidative stress status, and protecting beta-cell function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.