Abstract
Arsenic (As) is an environmental pollutant with destructive effects on different body organs, including the testis. This work was aimed to assess the ameliorative role of caffeic acid (CA) against As-provoked testicular damage in mice. Twenty-four adult male mice (31 ± 9 g) were randomly allocated to four equal groups. The first group served as control and was provided basal diet and tap water. Animals in the second group received water containing 200 ppm arsenite. The third group of mice received CA (60 mg/kg body weight; i.p.) during exposure to arsenite. Animals in the fourth group received CA. At the end of the experiment period (21 days), blood and testicular tissue sampling was done for biochemical and histopathological assessments. The results showed a significant decline of testicular ferric reducing antioxidant power (FRAP), superoxide dismutase, and glutathione peroxidase (GPx), as well as plasma concentrations of testosterone and dihydrotestosterone in As-treated mice compared to controls (p < 0.05). A significant increase in testicular malondialdehyde was also detected in group 2 relative to controls. Moreover, As exposure resulted in some morphological and histopathological alterations of the testis, including hyperemia, reduced tubular diameter and thickness of epithelial cell layers of seminiferous tubules, and Leydig cell necrosis. Simultaneous administration of CA plus As increased GPx, FRAP, testosterone, and dihydrotestosterone amounts and attenuated MDA levels as well as histopathological alterations to the levels that were not significantly different from those of the control group. These results indicate that caffeic acid can be suggested as an alleviative natural compound against As-induced damage in mice testes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.