Abstract
Background/Aims: Hepatocyte growth factor (HGF), a multi-potent growth factor, is known to promote regeneration of damaged renal epithelial cells. Glycerol injection into rats induces severe acute renal failure (ARF) with ischemia and tubular necrosis, a model which shares many features with human ARF or rhabdomyolysis. We investigated the efficacy of HGF in this glycerol-induced ARF rat model. Methods: ARF was induced by intramuscular injection of glycerol into the hind limbs of male Wistar rats. HGF (0.25 mg/kg/shot) or vehicle was administered intravenously 1 h before and 1, 3, 5, 8, 24 and 36 h after glycerol injection. Biochemical parameters for serum and urine were measured and histological analyses of the kidneys were performed. We also analyzed endogenous HGF expression and phosphorylation of c-Met/HGF receptor in the kidneys of glycerol-induced ARF rats. Results: Glycerol treatment caused severe ARF which invariably led to death of the rats. Repeated administration of HGF protected rats from death caused by severe ARF. Histological analyses revealed that HGF treatment reduced necrosis of tubular cells in the renal cortex. Serum/urine biochemical parameters also showed that renal dysfunction was improved by HGF administration. Intravenous administration of HGF enhanced phosphorylation of the c-Met/HGF receptor and mitogen-activated protein kinase in the kidney. In the vehicle-treated group the renal endogenous HGF concentration decreased and there was no change in c-Met/HGF receptor phosphorylation. Conclusion: These results indicate that HGF effectively accelerated the recovery of renal function and improved survival in glycerol-induced ARF rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.