Abstract

Brassinosteroids are a class of plant polyhydroxysteroids with a diverse of functions in plant growth and development, while ethylene is a gaseous hormone involved in regulation of numerous physiological processes. To evaluate the roles of BR and ethylene in seed germination under conditions of salt stress, effects of 24-Epibrassinolide (EBR) and 1-aminocyclopropane-1-carboxylic acid (ACC) on seed germination of cucumber (Cucumis sativus) seeds in the presence of 250 mM NaCl were investigated. Seed germination was significantly inhibited by the presence of NaCl in the incubation medium, and the inhibitory effect was significantly alleviated by addition of EBR and ACC to the incubation medium containing NaCl. There was an increase in ethylene evolution during seed germination and this increase was suppressed by salt stress. The reduction in ethylene evolution from imbibed seeds by salt stress was attenuated by EBR. Salt stress inhibited ACC oxidase (ACO) activity and EBR reversed the salt stress-induced decrease in ACO activity. Salt stress reduced expression of gene encoding ACO (CsACO2), and EBR reversed the salt stress-induced down-regulation of CsACO2. The alleviative effect of EBR on seed germination in the presence of NaCl was diminished by antagonist of ethylene synthesis, aminoethoxyvinylglycine. These results indicate that both ethylene and BR are likely to be associated with suppression of seed germination under salt stress and that the mitigating effect of BR on salt stress-induced inhibition of seed germination may occur through its interaction with ethylene synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.